home *** CD-ROM | disk | FTP | other *** search
open in:
MacOS 8.1
|
Win98
|
DOS
browse contents |
view JSON data
|
view as text
This file was processed as: LaTeX Document
(document/latex).
Confidence | Program | Detection | Match Type | Support
|
---|
100%
| dexvert
| LaTeX Document (document/latex)
| magic
| Supported |
1%
| dexvert
| Text File (text/txt)
| fallback
| Supported |
100%
| file
| LaTeX 2e document text
| default
| |
99%
| file
| LaTeX document text
| default
| |
98%
| file
| BibTeX-file{ BibTex text file (with full header), ASCII text
| default (weak)
| |
100%
| TrID
| LaTeX 2e document (with rem)
| default
| |
100%
| checkBytes
| Printable ASCII
| default
| |
100%
| perlTextCheck
| Likely Text (Perl)
| default
| |
100%
| detectItEasy
| Format: plain text[LF]
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 25 25 25 20 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |%%% ====|========|
|00000010| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000020| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000030| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000040| 3d 3d 3d 3d 3d 3d 3d 3d | 0a 25 25 25 20 20 40 4c |========|.%%% @L|
|00000050| 61 54 65 58 2d 66 69 6c | 65 7b 0a 25 25 25 20 20 |aTeX-fil|e{.%%% |
|00000060| 20 20 20 66 69 6c 65 6e | 61 6d 65 20 20 20 20 20 | filen|ame |
|00000070| 20 20 20 3d 20 22 74 68 | 6d 74 65 73 74 2e 74 65 | = "th|mtest.te|
|00000080| 78 22 2c 0a 25 25 25 20 | 20 20 20 20 76 65 72 73 |x",.%%% | vers|
|00000090| 69 6f 6e 20 20 20 20 20 | 20 20 20 20 3d 20 22 31 |ion | = "1|
|000000a0| 2e 32 22 2c 0a 25 25 25 | 20 20 20 20 20 64 61 74 |.2",.%%%| dat|
|000000b0| 65 20 20 20 20 20 20 20 | 20 20 20 20 20 3d 20 22 |e | = "|
|000000c0| 32 33 2d 4a 61 6e 2d 31 | 39 39 35 22 2c 0a 25 25 |23-Jan-1|995",.%%|
|000000d0| 25 20 20 20 20 20 74 69 | 6d 65 20 20 20 20 20 20 |% ti|me |
|000000e0| 20 20 20 20 20 20 3d 20 | 22 31 34 3a 35 36 3a 31 | = |"14:56:1|
|000000f0| 35 20 45 53 54 22 2c 0a | 25 25 25 20 20 20 20 20 |5 EST",.|%%% |
|00000100| 63 68 65 63 6b 73 75 6d | 20 20 20 20 20 20 20 20 |checksum| |
|00000110| 3d 20 22 35 30 39 34 38 | 20 32 34 36 20 39 33 32 |= "50948| 246 932|
|00000120| 20 38 32 38 34 22 2c 0a | 25 25 25 20 20 20 20 20 | 8284",.|%%% |
|00000130| 61 75 74 68 6f 72 20 20 | 20 20 20 20 20 20 20 20 |author | |
|00000140| 3d 20 22 41 6d 65 72 69 | 63 61 6e 20 4d 61 74 68 |= "Ameri|can Math|
|00000150| 65 6d 61 74 69 63 61 6c | 20 53 6f 63 69 65 74 79 |ematical| Society|
|00000160| 22 2c 0a 25 25 25 20 20 | 20 20 20 63 6f 70 79 72 |",.%%% | copyr|
|00000170| 69 67 68 74 20 20 20 20 | 20 20 20 3d 20 22 43 6f |ight | = "Co|
|00000180| 70 79 72 69 67 68 74 20 | 28 43 29 20 31 39 39 35 |pyright |(C) 1995|
|00000190| 20 41 6d 65 72 69 63 61 | 6e 20 4d 61 74 68 65 6d | America|n Mathem|
|000001a0| 61 74 69 63 61 6c 20 53 | 6f 63 69 65 74 79 2c 0a |atical S|ociety,.|
|000001b0| 25 25 25 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |%%% | |
|000001c0| 20 20 20 20 20 20 20 20 | 20 20 20 61 6c 6c 20 72 | | all r|
|000001d0| 69 67 68 74 73 20 72 65 | 73 65 72 76 65 64 2e 20 |ights re|served. |
|000001e0| 20 43 6f 70 79 69 6e 67 | 20 6f 66 20 74 68 69 73 | Copying| of this|
|000001f0| 20 66 69 6c 65 20 69 73 | 0a 25 25 25 20 20 20 20 | file is|.%%% |
|00000200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000210| 20 20 20 20 61 75 74 68 | 6f 72 69 7a 65 64 20 6f | auth|orized o|
|00000220| 6e 6c 79 20 69 66 20 65 | 69 74 68 65 72 3a 0a 25 |nly if e|ither:.%|
|00000230| 25 25 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |%% | |
|00000240| 20 20 20 20 20 20 20 20 | 20 20 28 31 29 20 79 6f | | (1) yo|
|00000250| 75 20 6d 61 6b 65 20 61 | 62 73 6f 6c 75 74 65 6c |u make a|bsolutel|
|00000260| 79 20 6e 6f 20 63 68 61 | 6e 67 65 73 20 74 6f 20 |y no cha|nges to |
|00000270| 79 6f 75 72 20 63 6f 70 | 79 2c 0a 25 25 25 20 20 |your cop|y,.%%% |
|00000280| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000290| 20 20 20 20 20 20 69 6e | 63 6c 75 64 69 6e 67 20 | in|cluding |
|000002a0| 6e 61 6d 65 3b 20 4f 52 | 0a 25 25 25 20 20 20 20 |name; OR|.%%% |
|000002b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000002c0| 20 20 20 20 28 32 29 20 | 69 66 20 79 6f 75 20 64 | (2) |if you d|
|000002d0| 6f 20 6d 61 6b 65 20 63 | 68 61 6e 67 65 73 2c 20 |o make c|hanges, |
|000002e0| 79 6f 75 20 66 69 72 73 | 74 20 72 65 6e 61 6d 65 |you firs|t rename|
|000002f0| 20 69 74 0a 25 25 25 20 | 20 20 20 20 20 20 20 20 | it.%%% | |
|00000300| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 74 | | t|
|00000310| 6f 20 73 6f 6d 65 20 6f | 74 68 65 72 20 6e 61 6d |o some o|ther nam|
|00000320| 65 2e 22 2c 0a 25 25 25 | 20 20 20 20 20 61 64 64 |e.",.%%%| add|
|00000330| 72 65 73 73 20 20 20 20 | 20 20 20 20 20 3d 20 22 |ress | = "|
|00000340| 41 6d 65 72 69 63 61 6e | 20 4d 61 74 68 65 6d 61 |American| Mathema|
|00000350| 74 69 63 61 6c 20 53 6f | 63 69 65 74 79 2c 0a 25 |tical So|ciety,.%|
|00000360| 25 25 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |%% | |
|00000370| 20 20 20 20 20 20 20 20 | 20 20 54 65 63 68 6e 69 | | Techni|
|00000380| 63 61 6c 20 53 75 70 70 | 6f 72 74 2c 0a 25 25 25 |cal Supp|ort,.%%%|
|00000390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003a0| 20 20 20 20 20 20 20 20 | 45 6c 65 63 74 72 6f 6e | |Electron|
|000003b0| 69 63 20 50 72 6f 64 75 | 63 74 73 20 61 6e 64 20 |ic Produ|cts and |
|000003c0| 53 65 72 76 69 63 65 73 | 2c 0a 25 25 25 20 20 20 |Services|,.%%% |
|000003d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003e0| 20 20 20 20 20 50 2e 20 | 4f 2e 20 42 6f 78 20 36 | P. |O. Box 6|
|000003f0| 32 34 38 2c 0a 25 25 25 | 20 20 20 20 20 20 20 20 |248,.%%%| |
|00000400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000410| 50 72 6f 76 69 64 65 6e | 63 65 2c 20 52 49 20 30 |Providen|ce, RI 0|
|00000420| 32 39 34 30 2c 0a 25 25 | 25 20 20 20 20 20 20 20 |2940,.%%|% |
|00000430| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000440| 20 55 53 41 22 2c 0a 25 | 25 25 20 20 20 20 20 74 | USA",.%|%% t|
|00000450| 65 6c 65 70 68 6f 6e 65 | 20 20 20 20 20 20 20 3d |elephone| =|
|00000460| 20 22 34 30 31 2d 34 35 | 35 2d 34 30 38 30 20 6f | "401-45|5-4080 o|
|00000470| 72 20 28 69 6e 20 74 68 | 65 20 55 53 41 20 61 6e |r (in th|e USA an|
|00000480| 64 20 43 61 6e 61 64 61 | 29 0a 25 25 25 20 20 20 |d Canada|).%%% |
|00000490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000004a0| 20 20 20 20 20 38 30 30 | 2d 33 32 31 2d 34 41 4d | 800|-321-4AM|
|000004b0| 53 20 28 33 32 31 2d 34 | 32 36 37 29 22 2c 0a 25 |S (321-4|267)",.%|
|000004c0| 25 25 20 20 20 20 20 46 | 41 58 20 20 20 20 20 20 |%% F|AX |
|000004d0| 20 20 20 20 20 20 20 3d | 20 22 34 30 31 2d 33 33 | =| "401-33|
|000004e0| 31 2d 33 38 34 32 22 2c | 0a 25 25 25 20 20 20 20 |1-3842",|.%%% |
|000004f0| 20 65 6d 61 69 6c 20 20 | 20 20 20 20 20 20 20 20 | email | |
|00000500| 20 3d 20 22 74 65 63 68 | 2d 73 75 70 70 6f 72 74 | = "tech|-support|
|00000510| 40 6d 61 74 68 2e 61 6d | 73 2e 6f 72 67 20 28 49 |@math.am|s.org (I|
|00000520| 6e 74 65 72 6e 65 74 29 | 22 2c 0a 25 25 25 20 20 |nternet)|",.%%% |
|00000530| 20 20 20 73 75 70 70 6f | 72 74 65 64 20 20 20 20 | suppo|rted |
|00000540| 20 20 20 3d 20 22 79 65 | 73 22 2c 0a 25 25 25 20 | = "ye|s",.%%% |
|00000550| 20 20 20 20 6b 65 79 77 | 6f 72 64 73 20 20 20 20 | keyw|ords |
|00000560| 20 20 20 20 3d 20 22 6c | 61 74 65 78 2c 20 61 6d | = "l|atex, am|
|00000570| 73 6c 61 74 65 78 2c 20 | 61 6d 73 2d 6c 61 74 65 |slatex, |ams-late|
|00000580| 78 2c 20 74 68 65 6f 72 | 65 6d 2c 20 70 72 6f 6f |x, theor|em, proo|
|00000590| 66 22 2c 0a 25 25 25 20 | 20 20 20 20 61 62 73 74 |f",.%%% | abst|
|000005a0| 72 61 63 74 20 20 20 20 | 20 20 20 20 3d 20 22 54 |ract | = "T|
|000005b0| 68 69 73 20 69 73 20 70 | 61 72 74 20 6f 66 20 74 |his is p|art of t|
|000005c0| 68 65 20 41 4d 53 2d 5c | 4c 61 54 65 58 7b 7d 20 |he AMS-\|LaTeX{} |
|000005d0| 64 69 73 74 72 69 62 75 | 74 69 6f 6e 2e 0a 25 25 |distribu|tion..%%|
|000005e0| 25 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |% | |
|000005f0| 20 20 20 20 20 20 20 20 | 20 49 74 20 69 73 20 61 | | It is a|
|00000600| 20 73 61 6d 70 6c 65 20 | 64 6f 63 75 6d 65 6e 74 | sample |document|
|00000610| 20 69 6c 6c 75 73 74 72 | 61 74 69 6e 67 20 74 68 | illustr|ating th|
|00000620| 65 20 75 73 65 20 6f 66 | 0a 25 25 25 20 20 20 20 |e use of|.%%% |
|00000630| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000640| 20 20 20 20 74 68 65 20 | 61 6d 73 74 68 6d 20 70 | the |amsthm p|
|00000650| 61 63 6b 61 67 65 2e 22 | 2c 0a 25 25 25 20 20 20 |ackage."|,.%%% |
|00000660| 20 20 64 6f 63 73 74 72 | 69 6e 67 20 20 20 20 20 | docstr|ing |
|00000670| 20 20 3d 20 22 54 68 65 | 20 63 68 65 63 6b 73 75 | = "The| checksu|
|00000680| 6d 20 66 69 65 6c 64 20 | 61 62 6f 76 65 20 63 6f |m field |above co|
|00000690| 6e 74 61 69 6e 73 20 61 | 20 43 52 43 2d 31 36 0a |ntains a| CRC-16.|
|000006a0| 25 25 25 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |%%% | |
|000006b0| 20 20 20 20 20 20 20 20 | 20 20 20 63 68 65 63 6b | | check|
|000006c0| 73 75 6d 20 61 73 20 74 | 68 65 20 66 69 72 73 74 |sum as t|he first|
|000006d0| 20 76 61 6c 75 65 2c 20 | 66 6f 6c 6c 6f 77 65 64 | value, |followed|
|000006e0| 20 62 79 20 74 68 65 0a | 25 25 25 20 20 20 20 20 | by the.|%%% |
|000006f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000700| 20 20 20 65 71 75 69 76 | 61 6c 65 6e 74 20 6f 66 | equiv|alent of|
|00000710| 20 74 68 65 20 73 74 61 | 6e 64 61 72 64 20 55 4e | the sta|ndard UN|
|00000720| 49 58 20 77 63 20 28 77 | 6f 72 64 0a 25 25 25 20 |IX wc (w|ord.%%% |
|00000730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000740| 20 20 20 20 20 20 20 63 | 6f 75 6e 74 29 20 75 74 | c|ount) ut|
|00000750| 69 6c 69 74 79 20 6f 75 | 74 70 75 74 20 6f 66 20 |ility ou|tput of |
|00000760| 6c 69 6e 65 73 2c 20 77 | 6f 72 64 73 2c 20 61 6e |lines, w|ords, an|
|00000770| 64 0a 25 25 25 20 20 20 | 20 20 20 20 20 20 20 20 |d.%%% | |
|00000780| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 63 68 61 | | cha|
|00000790| 72 61 63 74 65 72 73 2e | 20 20 54 68 69 73 20 69 |racters.| This i|
|000007a0| 73 20 70 72 6f 64 75 63 | 65 64 20 62 79 20 52 6f |s produc|ed by Ro|
|000007b0| 62 65 72 74 0a 25 25 25 | 20 20 20 20 20 20 20 20 |bert.%%%| |
|000007c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000007d0| 53 6f 6c 6f 76 61 79 27 | 73 20 63 68 65 63 6b 73 |Solovay'|s checks|
|000007e0| 75 6d 20 75 74 69 6c 69 | 74 79 2e 22 2c 0a 25 25 |um utili|ty.",.%%|
|000007f0| 25 20 20 7d 0a 25 25 25 | 20 3d 3d 3d 3d 3d 3d 3d |% }.%%%| =======|
|00000800| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000810| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000820| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 3d 3d 3d |========|========|
|00000830| 3d 3d 3d 3d 3d 3d 3d 3d | 3d 3d 3d 3d 3d 0a 0a 25 |========|=====..%|
|00000840| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000850| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000860| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000870| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000880| 25 25 25 25 25 25 25 0a | 25 20 20 20 20 4f 70 74 |%%%%%%%.|% Opt|
|00000890| 69 6f 6e 20 74 65 73 74 | 20 66 69 6c 65 2c 20 77 |ion test| file, w|
|000008a0| 69 6c 6c 20 62 65 20 63 | 72 65 61 74 65 64 20 64 |ill be c|reated d|
|000008b0| 75 72 69 6e 67 20 74 68 | 65 20 66 69 72 73 74 20 |uring th|e first |
|000008c0| 4c 61 54 65 58 20 72 75 | 6e 3a 0a 5c 62 65 67 69 |LaTeX ru|n:.\begi|
|000008d0| 6e 7b 66 69 6c 65 63 6f | 6e 74 65 6e 74 73 7d 7b |n{fileco|ntents}{|
|000008e0| 65 78 65 72 63 69 73 65 | 2e 74 68 6d 7d 0a 5c 64 |exercise|.thm}.\d|
|000008f0| 65 66 5c 74 68 40 65 78 | 65 72 63 69 73 65 7b 25 |ef\th@ex|ercise{%|
|00000900| 0a 20 20 5c 6e 6f 72 6d | 61 6c 66 6f 6e 74 20 25 |. \norm|alfont %|
|00000910| 20 62 6f 64 79 20 66 6f | 6e 74 0a 20 20 5c 74 68 | body fo|nt. \th|
|00000920| 65 6f 72 65 6d 68 65 61 | 64 70 75 6e 63 74 7b 3a |eoremhea|dpunct{:|
|00000930| 7d 25 0a 7d 0a 5c 65 6e | 64 7b 66 69 6c 65 63 6f |}%.}.\en|d{fileco|
|00000940| 6e 74 65 6e 74 73 7d 0a | 25 25 25 25 25 25 25 25 |ntents}.|%%%%%%%%|
|00000950| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000960| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000970| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000980| 25 25 25 25 25 25 25 25 | 25 25 25 25 25 25 25 25 |%%%%%%%%|%%%%%%%%|
|00000990| 0a 0a 5c 64 6f 63 75 6d | 65 6e 74 63 6c 61 73 73 |..\docum|entclass|
|000009a0| 7b 61 72 74 69 63 6c 65 | 7d 0a 5c 74 69 74 6c 65 |{article|}.\title|
|000009b0| 7b 4e 65 77 74 68 65 6f | 72 65 6d 20 61 6e 64 20 |{Newtheo|rem and |
|000009c0| 74 68 65 6f 72 65 6d 73 | 74 79 6c 65 20 74 65 73 |theorems|tyle tes|
|000009d0| 74 7d 0a 5c 61 75 74 68 | 6f 72 7b 4d 69 63 68 61 |t}.\auth|or{Micha|
|000009e0| 65 6c 20 44 6f 77 6e 65 | 73 7d 0a 0a 5c 75 73 65 |el Downe|s}..\use|
|000009f0| 70 61 63 6b 61 67 65 5b | 65 78 65 72 63 69 73 65 |package[|exercise|
|00000a00| 5d 7b 61 6d 73 74 68 6d | 7d 0a 0a 5c 6e 65 77 74 |]{amsthm|}..\newt|
|00000a10| 68 65 6f 72 65 6d 7b 74 | 68 6d 7d 7b 54 68 65 6f |heorem{t|hm}{Theo|
|00000a20| 72 65 6d 7d 5b 73 65 63 | 74 69 6f 6e 5d 0a 5c 6e |rem}[sec|tion].\n|
|00000a30| 65 77 74 68 65 6f 72 65 | 6d 7b 63 6f 72 7d 5b 74 |ewtheore|m{cor}[t|
|00000a40| 68 6d 5d 7b 43 6f 72 6f | 6c 6c 61 72 79 7d 0a 5c |hm]{Coro|llary}.\|
|00000a50| 6e 65 77 74 68 65 6f 72 | 65 6d 7b 70 72 6f 70 7d |newtheor|em{prop}|
|00000a60| 7b 50 72 6f 70 6f 73 69 | 74 69 6f 6e 7d 0a 5c 6e |{Proposi|tion}.\n|
|00000a70| 65 77 74 68 65 6f 72 65 | 6d 7b 6c 65 6d 7d 5b 74 |ewtheore|m{lem}[t|
|00000a80| 68 6d 5d 7b 4c 65 6d 6d | 61 7d 0a 0a 5c 74 68 65 |hm]{Lemm|a}..\the|
|00000a90| 6f 72 65 6d 73 74 79 6c | 65 7b 72 65 6d 61 72 6b |oremstyl|e{remark|
|00000aa0| 7d 0a 5c 6e 65 77 74 68 | 65 6f 72 65 6d 2a 7b 72 |}.\newth|eorem*{r|
|00000ab0| 6d 6b 7d 7b 52 65 6d 61 | 72 6b 7d 0a 0a 5c 74 68 |mk}{Rema|rk}..\th|
|00000ac0| 65 6f 72 65 6d 73 74 79 | 6c 65 7b 70 6c 61 69 6e |eoremsty|le{plain|
|00000ad0| 7d 0a 5c 6e 65 77 74 68 | 65 6f 72 65 6d 2a 7b 41 |}.\newth|eorem*{A|
|00000ae0| 68 6c 66 6f 72 73 7d 7b | 41 68 6c 66 6f 72 73 27 |hlfors}{|Ahlfors'|
|00000af0| 20 4c 65 6d 6d 61 7d 0a | 0a 5c 6e 65 77 74 68 65 | Lemma}.|.\newthe|
|00000b00| 6f 72 65 6d 73 74 79 6c | 65 7b 6e 6f 74 65 7d 25 |oremstyl|e{note}%|
|00000b10| 20 6e 61 6d 65 0a 20 20 | 7b 33 70 74 7d 25 20 20 | name. |{3pt}% |
|00000b20| 20 20 20 20 53 70 61 63 | 65 20 61 62 6f 76 65 0a | Spac|e above.|
|00000b30| 20 20 7b 33 70 74 7d 25 | 20 20 20 20 20 20 53 70 | {3pt}%| Sp|
|00000b40| 61 63 65 20 62 65 6c 6f | 77 0a 20 20 7b 7d 25 20 |ace belo|w. {}% |
|00000b50| 20 20 20 20 20 20 20 20 | 42 6f 64 79 20 66 6f 6e | |Body fon|
|00000b60| 74 0a 20 20 7b 7d 25 20 | 20 20 20 20 20 20 20 20 |t. {}% | |
|00000b70| 49 6e 64 65 6e 74 20 61 | 6d 6f 75 6e 74 20 28 65 |Indent a|mount (e|
|00000b80| 6d 70 74 79 20 3d 20 6e | 6f 20 69 6e 64 65 6e 74 |mpty = n|o indent|
|00000b90| 2c 20 5c 70 61 72 69 6e | 64 65 6e 74 20 3d 20 70 |, \parin|dent = p|
|00000ba0| 61 72 61 20 69 6e 64 65 | 6e 74 29 0a 20 20 7b 5c |ara inde|nt). {\|
|00000bb0| 69 74 73 68 61 70 65 7d | 25 20 54 68 6d 20 68 65 |itshape}|% Thm he|
|00000bc0| 61 64 20 66 6f 6e 74 0a | 20 20 7b 3a 7d 25 20 20 |ad font.| {:}% |
|00000bd0| 20 20 20 20 20 20 50 75 | 6e 63 74 75 61 74 69 6f | Pu|nctuatio|
|00000be0| 6e 20 61 66 74 65 72 20 | 74 68 6d 20 68 65 61 64 |n after |thm head|
|00000bf0| 0a 20 20 7b 2e 35 65 6d | 7d 25 20 20 20 20 20 53 |. {.5em|}% S|
|00000c00| 70 61 63 65 20 61 66 74 | 65 72 20 74 68 6d 20 68 |pace aft|er thm h|
|00000c10| 65 61 64 3a 20 22 20 22 | 20 3d 20 6e 6f 72 6d 61 |ead: " "| = norma|
|00000c20| 6c 20 69 6e 74 65 72 77 | 6f 72 64 20 73 70 61 63 |l interw|ord spac|
|00000c30| 65 3b 0a 20 20 20 20 20 | 20 20 20 25 20 20 20 20 |e;. | % |
|00000c40| 20 20 20 5c 6e 65 77 6c | 69 6e 65 20 3d 20 6c 69 | \newl|ine = li|
|00000c50| 6e 65 62 72 65 61 6b 0a | 20 20 7b 7d 25 20 20 20 |nebreak.| {}% |
|00000c60| 20 20 20 20 20 20 54 68 | 6d 20 68 65 61 64 20 73 | Th|m head s|
|00000c70| 70 65 63 20 28 63 61 6e | 20 62 65 20 6c 65 66 74 |pec (can| be left|
|00000c80| 20 65 6d 70 74 79 2c 20 | 6d 65 61 6e 69 6e 67 20 | empty, |meaning |
|00000c90| 60 6e 6f 72 6d 61 6c 27 | 29 0a 0a 5c 74 68 65 6f |`normal'|)..\theo|
|00000ca0| 72 65 6d 73 74 79 6c 65 | 7b 6e 6f 74 65 7d 0a 5c |remstyle|{note}.\|
|00000cb0| 6e 65 77 74 68 65 6f 72 | 65 6d 7b 6e 6f 74 65 7d |newtheor|em{note}|
|00000cc0| 7b 4e 6f 74 65 7d 0a 0a | 5c 6e 65 77 74 68 65 6f |{Note}..|\newtheo|
|00000cd0| 72 65 6d 73 74 79 6c 65 | 7b 63 69 74 69 6e 67 7d |remstyle|{citing}|
|00000ce0| 25 20 6e 61 6d 65 0a 20 | 20 7b 33 70 74 7d 25 20 |% name. | {3pt}% |
|00000cf0| 20 20 20 20 20 53 70 61 | 63 65 20 61 62 6f 76 65 | Spa|ce above|
|00000d00| 2c 20 65 6d 70 74 79 20 | 3d 20 60 75 73 75 61 6c |, empty |= `usual|
|00000d10| 20 76 61 6c 75 65 27 0a | 20 20 7b 33 70 74 7d 25 | value'.| {3pt}%|
|00000d20| 20 20 20 20 20 20 53 70 | 61 63 65 20 62 65 6c 6f | Sp|ace belo|
|00000d30| 77 0a 20 20 7b 5c 69 74 | 73 68 61 70 65 7d 25 20 |w. {\it|shape}% |
|00000d40| 42 6f 64 79 20 66 6f 6e | 74 0a 20 20 7b 7d 25 20 |Body fon|t. {}% |
|00000d50| 20 20 20 20 20 20 20 20 | 49 6e 64 65 6e 74 20 61 | |Indent a|
|00000d60| 6d 6f 75 6e 74 20 28 65 | 6d 70 74 79 20 3d 20 6e |mount (e|mpty = n|
|00000d70| 6f 20 69 6e 64 65 6e 74 | 2c 20 5c 70 61 72 69 6e |o indent|, \parin|
|00000d80| 64 65 6e 74 20 3d 20 70 | 61 72 61 20 69 6e 64 65 |dent = p|ara inde|
|00000d90| 6e 74 29 0a 20 20 7b 5c | 62 66 73 65 72 69 65 73 |nt). {\|bfseries|
|00000da0| 7d 25 20 54 68 6d 20 68 | 65 61 64 20 66 6f 6e 74 |}% Thm h|ead font|
|00000db0| 0a 20 20 7b 2e 7d 25 20 | 20 20 20 20 20 20 20 50 |. {.}% | P|
|00000dc0| 75 6e 63 74 75 61 74 69 | 6f 6e 20 61 66 74 65 72 |unctuati|on after|
|00000dd0| 20 74 68 6d 20 68 65 61 | 64 0a 20 20 7b 2e 35 65 | thm hea|d. {.5e|
|00000de0| 6d 7d 25 20 20 20 20 20 | 53 70 61 63 65 20 61 66 |m}% |Space af|
|00000df0| 74 65 72 20 74 68 6d 20 | 68 65 61 64 3a 20 22 20 |ter thm |head: " |
|00000e00| 22 20 3d 20 6e 6f 72 6d | 61 6c 20 69 6e 74 65 72 |" = norm|al inter|
|00000e10| 77 6f 72 64 20 73 70 61 | 63 65 3b 0a 20 20 20 20 |word spa|ce;. |
|00000e20| 20 20 20 20 25 20 20 20 | 20 20 20 20 5c 6e 65 77 | % | \new|
|00000e30| 6c 69 6e 65 20 3d 20 6c | 69 6e 65 62 72 65 61 6b |line = l|inebreak|
|00000e40| 0a 20 20 7b 5c 74 68 6d | 6e 6f 74 65 7b 23 33 7d |. {\thm|note{#3}|
|00000e50| 7d 25 20 54 68 6d 20 68 | 65 61 64 20 73 70 65 63 |}% Thm h|ead spec|
|00000e60| 0a 0a 5c 74 68 65 6f 72 | 65 6d 73 74 79 6c 65 7b |..\theor|emstyle{|
|00000e70| 63 69 74 69 6e 67 7d 0a | 5c 6e 65 77 74 68 65 6f |citing}.|\newtheo|
|00000e80| 72 65 6d 2a 7b 76 61 72 | 74 68 6d 7d 7b 7d 25 20 |rem*{var|thm}{}% |
|00000e90| 61 6c 6c 20 74 65 78 74 | 20 73 75 70 70 6c 69 65 |all text| supplie|
|00000ea0| 64 20 69 6e 20 74 68 65 | 20 6e 6f 74 65 0a 0a 5c |d in the| note..\|
|00000eb0| 6e 65 77 74 68 65 6f 72 | 65 6d 73 74 79 6c 65 7b |newtheor|emstyle{|
|00000ec0| 62 72 65 61 6b 7d 25 20 | 6e 61 6d 65 0a 20 20 7b |break}% |name. {|
|00000ed0| 39 70 74 7d 25 20 20 20 | 20 20 20 53 70 61 63 65 |9pt}% | Space|
|00000ee0| 20 61 62 6f 76 65 2c 20 | 65 6d 70 74 79 20 3d 20 | above, |empty = |
|00000ef0| 60 75 73 75 61 6c 20 76 | 61 6c 75 65 27 0a 20 20 |`usual v|alue'. |
|00000f00| 7b 39 70 74 7d 25 20 20 | 20 20 20 20 53 70 61 63 |{9pt}% | Spac|
|00000f10| 65 20 62 65 6c 6f 77 0a | 20 20 7b 5c 69 74 73 68 |e below.| {\itsh|
|00000f20| 61 70 65 7d 25 20 42 6f | 64 79 20 66 6f 6e 74 0a |ape}% Bo|dy font.|
|00000f30| 20 20 7b 7d 25 20 20 20 | 20 20 20 20 20 20 49 6e | {}% | In|
|00000f40| 64 65 6e 74 20 61 6d 6f | 75 6e 74 20 28 65 6d 70 |dent amo|unt (emp|
|00000f50| 74 79 20 3d 20 6e 6f 20 | 69 6e 64 65 6e 74 2c 20 |ty = no |indent, |
|00000f60| 5c 70 61 72 69 6e 64 65 | 6e 74 20 3d 20 70 61 72 |\parinde|nt = par|
|00000f70| 61 20 69 6e 64 65 6e 74 | 29 0a 20 20 7b 5c 62 66 |a indent|). {\bf|
|00000f80| 73 65 72 69 65 73 7d 25 | 20 54 68 6d 20 68 65 61 |series}%| Thm hea|
|00000f90| 64 20 66 6f 6e 74 0a 20 | 20 7b 2e 7d 25 20 20 20 |d font. | {.}% |
|00000fa0| 20 20 20 20 20 50 75 6e | 63 74 75 61 74 69 6f 6e | Pun|ctuation|
|00000fb0| 20 61 66 74 65 72 20 74 | 68 6d 20 68 65 61 64 0a | after t|hm head.|
|00000fc0| 20 20 7b 5c 6e 65 77 6c | 69 6e 65 7d 25 20 53 70 | {\newl|ine}% Sp|
|00000fd0| 61 63 65 20 61 66 74 65 | 72 20 74 68 6d 20 68 65 |ace afte|r thm he|
|00000fe0| 61 64 3a 20 5c 6e 65 77 | 6c 69 6e 65 20 3d 20 6c |ad: \new|line = l|
|00000ff0| 69 6e 65 62 72 65 61 6b | 0a 20 20 7b 7d 25 20 20 |inebreak|. {}% |
|00001000| 20 20 20 20 20 20 20 54 | 68 6d 20 68 65 61 64 20 | T|hm head |
|00001010| 73 70 65 63 0a 0a 5c 74 | 68 65 6f 72 65 6d 73 74 |spec..\t|heoremst|
|00001020| 79 6c 65 7b 62 72 65 61 | 6b 7d 0a 5c 6e 65 77 74 |yle{brea|k}.\newt|
|00001030| 68 65 6f 72 65 6d 7b 62 | 74 68 6d 7d 7b 42 2d 54 |heorem{b|thm}{B-T|
|00001040| 68 65 6f 72 65 6d 7d 0a | 0a 5c 74 68 65 6f 72 65 |heorem}.|.\theore|
|00001050| 6d 73 74 79 6c 65 7b 65 | 78 65 72 63 69 73 65 7d |mstyle{e|xercise}|
|00001060| 0a 5c 6e 65 77 74 68 65 | 6f 72 65 6d 7b 65 78 65 |.\newthe|orem{exe|
|00001070| 72 7d 7b 45 78 65 72 63 | 69 73 65 7d 0a 0a 5c 73 |r}{Exerc|ise}..\s|
|00001080| 77 61 70 6e 75 6d 62 65 | 72 73 0a 5c 74 68 65 6f |wapnumbe|rs.\theo|
|00001090| 72 65 6d 73 74 79 6c 65 | 7b 70 6c 61 69 6e 7d 0a |remstyle|{plain}.|
|000010a0| 5c 6e 65 77 74 68 65 6f | 72 65 6d 7b 74 68 6d 73 |\newtheo|rem{thms|
|000010b0| 77 7d 7b 54 68 65 6f 72 | 65 6d 7d 5b 73 65 63 74 |w}{Theor|em}[sect|
|000010c0| 69 6f 6e 5d 0a 5c 6e 65 | 77 74 68 65 6f 72 65 6d |ion].\ne|wtheorem|
|000010d0| 7b 63 6f 72 73 77 7d 5b | 74 68 6d 5d 7b 43 6f 72 |{corsw}[|thm]{Cor|
|000010e0| 6f 6c 6c 61 72 79 7d 0a | 5c 6e 65 77 74 68 65 6f |ollary}.|\newtheo|
|000010f0| 72 65 6d 7b 70 72 6f 70 | 73 77 7d 7b 50 72 6f 70 |rem{prop|sw}{Prop|
|00001100| 6f 73 69 74 69 6f 6e 7d | 0a 5c 6e 65 77 74 68 65 |osition}|.\newthe|
|00001110| 6f 72 65 6d 7b 6c 65 6d | 73 77 7d 5b 74 68 6d 5d |orem{lem|sw}[thm]|
|00001120| 7b 4c 65 6d 6d 61 7d 0a | 0a 25 20 20 20 20 42 65 |{Lemma}.|.% Be|
|00001130| 63 61 75 73 65 20 74 68 | 65 20 61 6d 73 6d 61 74 |cause th|e amsmat|
|00001140| 68 20 70 6b 67 20 69 73 | 20 6e 6f 74 20 75 73 65 |h pkg is| not use|
|00001150| 64 2c 20 77 65 20 6e 65 | 65 64 20 74 6f 20 64 65 |d, we ne|ed to de|
|00001160| 66 69 6e 65 20 61 20 63 | 6f 75 70 6c 65 20 6f 66 |fine a c|ouple of|
|00001170| 0a 25 20 20 20 20 63 6f | 6d 6d 61 6e 64 73 20 69 |.% co|mmands i|
|00001180| 6e 20 6d 6f 72 65 20 70 | 72 69 6d 69 74 69 76 65 |n more p|rimitive|
|00001190| 20 74 65 72 6d 73 2e 0a | 5c 6c 65 74 5c 6c 76 65 | terms..|\let\lve|
|000011a0| 72 74 3d 7c 5c 6c 65 74 | 5c 72 76 65 72 74 3d 7c |rt=|\let|\rvert=||
|000011b0| 0a 5c 6e 65 77 63 6f 6d | 6d 61 6e 64 7b 5c 52 69 |.\newcom|mand{\Ri|
|000011c0| 63 7d 7b 5c 6d 61 74 68 | 6f 70 7b 5c 6d 61 74 68 |c}{\math|op{\math|
|000011d0| 72 6d 7b 52 69 63 7d 7d | 5c 6e 6f 6c 69 6d 69 74 |rm{Ric}}|\nolimit|
|000011e0| 73 7d 0a 0a 25 20 20 20 | 20 44 69 73 70 65 6c 20 |s}..% | Dispel |
|000011f0| 61 6e 6e 6f 79 69 6e 67 | 20 70 72 6f 62 6c 65 6d |annoying| problem|
|00001200| 20 6f 66 20 73 6c 69 67 | 68 74 6c 79 20 6f 76 65 | of slig|htly ove|
|00001210| 72 6c 6f 6e 67 20 6c 69 | 6e 65 73 3a 0a 5c 61 64 |rlong li|nes:.\ad|
|00001220| 64 74 6f 6c 65 6e 67 74 | 68 7b 5c 74 65 78 74 77 |dtolengt|h{\textw|
|00001230| 69 64 74 68 7d 7b 38 70 | 74 7d 0a 0a 5c 62 65 67 |idth}{8p|t}..\beg|
|00001240| 69 6e 7b 64 6f 63 75 6d | 65 6e 74 7d 0a 5c 6d 61 |in{docum|ent}.\ma|
|00001250| 6b 65 74 69 74 6c 65 0a | 0a 5c 73 65 63 74 69 6f |ketitle.|.\sectio|
|00001260| 6e 7b 54 65 73 74 20 6f | 66 20 73 74 61 6e 64 61 |n{Test o|f standa|
|00001270| 72 64 20 74 68 65 6f 72 | 65 6d 20 73 74 79 6c 65 |rd theor|em style|
|00001280| 73 7d 0a 0a 41 68 6c 66 | 6f 72 73 27 20 4c 65 6d |s}..Ahlf|ors' Lem|
|00001290| 6d 61 20 67 69 76 65 73 | 20 74 68 65 20 70 72 69 |ma gives| the pri|
|000012a0| 6e 63 69 70 61 6c 20 63 | 72 69 74 65 72 69 6f 6e |ncipal c|riterion|
|000012b0| 20 66 6f 72 20 6f 62 74 | 61 69 6e 69 6e 67 20 6c | for obt|aining l|
|000012c0| 6f 77 65 72 20 62 6f 75 | 6e 64 73 0a 6f 6e 20 74 |ower bou|nds.on t|
|000012d0| 68 65 20 4b 6f 62 61 79 | 61 73 68 69 20 6d 65 74 |he Kobay|ashi met|
|000012e0| 72 69 63 2e 0a 0a 5c 62 | 65 67 69 6e 7b 41 68 6c |ric...\b|egin{Ahl|
|000012f0| 66 6f 72 73 7d 0a 4c 65 | 74 20 24 64 73 5e 32 20 |fors}.Le|t $ds^2 |
|00001300| 3d 20 68 28 7a 29 5c 6c | 76 65 72 74 20 64 7a 5c |= h(z)\l|vert dz\|
|00001310| 72 76 65 72 74 5e 32 24 | 20 62 65 20 61 20 48 65 |rvert^2$| be a He|
|00001320| 72 6d 69 74 69 61 6e 20 | 70 73 65 75 64 6f 2d 6d |rmitian |pseudo-m|
|00001330| 65 74 72 69 63 20 6f 6e | 0a 24 5c 6d 61 74 68 62 |etric on|.$\mathb|
|00001340| 66 7b 44 7d 5f 72 24 2c | 20 24 68 5c 69 6e 20 43 |f{D}_r$,| $h\in C|
|00001350| 5e 32 28 5c 6d 61 74 68 | 62 66 7b 44 7d 5f 72 29 |^2(\math|bf{D}_r)|
|00001360| 24 2c 20 77 69 74 68 20 | 24 5c 6f 6d 65 67 61 24 |$, with |$\omega$|
|00001370| 20 74 68 65 20 61 73 73 | 6f 63 69 61 74 65 64 0a | the ass|ociated.|
|00001380| 24 28 31 2c 31 29 24 2d | 66 6f 72 6d 2e 20 49 66 |$(1,1)$-|form. If|
|00001390| 20 24 5c 52 69 63 5c 6f | 6d 65 67 61 5c 67 65 71 | $\Ric\o|mega\geq|
|000013a0| 5c 6f 6d 65 67 61 24 20 | 6f 6e 20 24 5c 6d 61 74 |\omega$ |on $\mat|
|000013b0| 68 62 66 7b 44 7d 5f 72 | 24 2c 0a 74 68 65 6e 20 |hbf{D}_r|$,.then |
|000013c0| 24 5c 6f 6d 65 67 61 5c | 6c 65 71 5c 6f 6d 65 67 |$\omega\|leq\omeg|
|000013d0| 61 5f 72 24 20 6f 6e 20 | 61 6c 6c 20 6f 66 20 24 |a_r$ on |all of $|
|000013e0| 5c 6d 61 74 68 62 66 7b | 44 7d 5f 72 24 20 28 6f |\mathbf{|D}_r$ (o|
|000013f0| 72 20 65 71 75 69 76 61 | 6c 65 6e 74 6c 79 2c 0a |r equiva|lently,.|
|00001400| 24 64 73 5e 32 5c 6c 65 | 71 20 64 73 5f 72 5e 32 |$ds^2\le|q ds_r^2|
|00001410| 24 29 2e 0a 5c 65 6e 64 | 7b 41 68 6c 66 6f 72 73 |$)..\end|{Ahlfors|
|00001420| 7d 0a 0a 5c 62 65 67 69 | 6e 7b 6c 65 6d 7d 5b 6e |}..\begi|n{lem}[n|
|00001430| 65 67 61 74 69 76 65 6c | 79 20 63 75 72 76 65 64 |egativel|y curved|
|00001440| 20 66 61 6d 69 6c 69 65 | 73 5d 0a 4c 65 74 20 24 | familie|s].Let $|
|00001450| 5c 7b 64 73 5f 31 5e 32 | 2c 5c 64 6f 74 73 2c 64 |\{ds_1^2|,\dots,d|
|00001460| 73 5f 6b 5e 32 5c 7d 24 | 20 62 65 20 61 20 6e 65 |s_k^2\}$| be a ne|
|00001470| 67 61 74 69 76 65 6c 79 | 20 63 75 72 76 65 64 20 |gatively| curved |
|00001480| 66 61 6d 69 6c 79 20 6f | 66 20 6d 65 74 72 69 63 |family o|f metric|
|00001490| 73 0a 6f 6e 20 24 5c 6d | 61 74 68 62 66 7b 44 7d |s.on $\m|athbf{D}|
|000014a0| 5f 72 24 2c 20 77 69 74 | 68 20 61 73 73 6f 63 69 |_r$, wit|h associ|
|000014b0| 61 74 65 64 20 66 6f 72 | 6d 73 20 24 5c 6f 6d 65 |ated for|ms $\ome|
|000014c0| 67 61 5e 31 24 2c 20 5c | 64 6f 74 73 2c 20 24 5c |ga^1$, \|dots, $\|
|000014d0| 6f 6d 65 67 61 5e 6b 24 | 2e 0a 54 68 65 6e 20 24 |omega^k$|..Then $|
|000014e0| 5c 6f 6d 65 67 61 5e 69 | 20 5c 6c 65 71 5c 6f 6d |\omega^i| \leq\om|
|000014f0| 65 67 61 5f 72 24 20 66 | 6f 72 20 61 6c 6c 20 24 |ega_r$ f|or all $|
|00001500| 69 24 2e 0a 5c 65 6e 64 | 7b 6c 65 6d 7d 0a 0a 54 |i$..\end|{lem}..T|
|00001510| 68 65 6e 20 6f 75 72 20 | 6d 61 69 6e 20 74 68 65 |hen our |main the|
|00001520| 6f 72 65 6d 3a 0a 5c 62 | 65 67 69 6e 7b 74 68 6d |orem:.\b|egin{thm|
|00001530| 7d 5c 6c 61 62 65 6c 7b | 70 69 67 73 70 61 6e 7d |}\label{|pigspan}|
|00001540| 0a 4c 65 74 20 24 64 5f | 7b 5c 6d 61 78 7d 24 20 |.Let $d_|{\max}$ |
|00001550| 61 6e 64 20 24 64 5f 7b | 5c 6d 69 6e 7d 24 20 62 |and $d_{|\min}$ b|
|00001560| 65 20 74 68 65 20 6d 61 | 78 69 6d 75 6d 2c 20 72 |e the ma|ximum, r|
|00001570| 65 73 70 2e 5c 20 6d 69 | 6e 69 6d 75 6d 20 64 69 |esp.\ mi|nimum di|
|00001580| 73 74 61 6e 63 65 0a 62 | 65 74 77 65 65 6e 20 61 |stance.b|etween a|
|00001590| 6e 79 20 74 77 6f 20 61 | 64 6a 61 63 65 6e 74 20 |ny two a|djacent |
|000015a0| 76 65 72 74 69 63 65 73 | 20 6f 66 20 61 20 71 75 |vertices| of a qu|
|000015b0| 61 64 72 69 6c 61 74 65 | 72 61 6c 20 24 51 24 2e |adrilate|ral $Q$.|
|000015c0| 20 4c 65 74 20 24 5c 73 | 69 67 6d 61 24 0a 62 65 | Let $\s|igma$.be|
|000015d0| 20 74 68 65 20 64 69 61 | 67 6f 6e 61 6c 20 70 69 | the dia|gonal pi|
|000015e0| 67 73 70 61 6e 20 6f 66 | 20 61 20 70 69 67 20 24 |gspan of| a pig $|
|000015f0| 50 24 20 77 69 74 68 20 | 66 6f 75 72 20 6c 65 67 |P$ with |four leg|
|00001600| 73 2e 0a 54 68 65 6e 20 | 24 50 24 20 69 73 20 63 |s..Then |$P$ is c|
|00001610| 61 70 61 62 6c 65 20 6f | 66 20 73 74 61 6e 64 69 |apable o|f standi|
|00001620| 6e 67 20 6f 6e 20 74 68 | 65 20 63 6f 72 6e 65 72 |ng on th|e corner|
|00001630| 73 20 6f 66 20 24 51 24 | 20 69 66 66 0a 5c 62 65 |s of $Q$| iff.\be|
|00001640| 67 69 6e 7b 65 71 75 61 | 74 69 6f 6e 7d 5c 6c 61 |gin{equa|tion}\la|
|00001650| 62 65 6c 7b 73 64 71 7d | 0a 5c 73 69 67 6d 61 5c |bel{sdq}|.\sigma\|
|00001660| 67 65 71 20 5c 73 71 72 | 74 7b 64 5f 7b 5c 6d 61 |geq \sqr|t{d_{\ma|
|00001670| 78 7d 5e 32 2b 64 5f 7b | 5c 6d 69 6e 7d 5e 32 7d |x}^2+d_{|\min}^2}|
|00001680| 2e 0a 5c 65 6e 64 7b 65 | 71 75 61 74 69 6f 6e 7d |..\end{e|quation}|
|00001690| 0a 5c 65 6e 64 7b 74 68 | 6d 7d 0a 0a 5c 62 65 67 |.\end{th|m}..\beg|
|000016a0| 69 6e 7b 63 6f 72 7d 0a | 41 64 6d 69 74 74 69 6e |in{cor}.|Admittin|
|000016b0| 67 20 72 65 66 6c 65 63 | 74 69 6f 6e 20 61 6e 64 |g reflec|tion and|
|000016c0| 20 72 6f 74 61 74 69 6f | 6e 2c 20 61 20 74 68 72 | rotatio|n, a thr|
|000016d0| 65 65 2d 6c 65 67 67 65 | 64 20 70 69 67 20 24 50 |ee-legge|d pig $P|
|000016e0| 24 20 69 73 20 63 61 70 | 61 62 6c 65 20 6f 66 0a |$ is cap|able of.|
|000016f0| 73 74 61 6e 64 69 6e 67 | 20 6f 6e 20 74 68 65 20 |standing| on the |
|00001700| 63 6f 72 6e 65 72 73 20 | 6f 66 20 61 20 74 72 69 |corners |of a tri|
|00001710| 61 6e 67 6c 65 20 24 54 | 24 20 69 66 66 20 28 5c |angle $T|$ iff (\|
|00001720| 72 65 66 7b 73 64 71 7d | 29 20 68 6f 6c 64 73 2e |ref{sdq}|) holds.|
|00001730| 0a 5c 65 6e 64 7b 63 6f | 72 7d 0a 0a 5c 62 65 67 |.\end{co|r}..\beg|
|00001740| 69 6e 7b 72 6d 6b 7d 0a | 41 73 20 74 77 6f 2d 6c |in{rmk}.|As two-l|
|00001750| 65 67 67 65 64 20 70 69 | 67 73 20 67 65 6e 65 72 |egged pi|gs gener|
|00001760| 61 6c 6c 79 20 66 61 6c | 6c 20 6f 76 65 72 2c 20 |ally fal|l over, |
|00001770| 74 68 65 20 63 61 73 65 | 20 6f 66 20 61 20 70 6f |the case| of a po|
|00001780| 6c 79 67 6f 6e 20 6f 66 | 20 6f 72 64 65 72 0a 24 |lygon of| order.$|
|00001790| 32 24 20 69 73 20 75 6e | 69 6e 74 65 72 65 73 74 |2$ is un|interest|
|000017a0| 69 6e 67 2e 0a 5c 65 6e | 64 7b 72 6d 6b 7d 0a 0a |ing..\en|d{rmk}..|
|000017b0| 5c 62 65 67 69 6e 7b 65 | 78 65 72 7d 0a 47 65 6e |\begin{e|xer}.Gen|
|000017c0| 65 72 61 6c 69 7a 65 20 | 54 68 65 6f 72 65 6d 7e |eralize |Theorem~|
|000017d0| 5c 72 65 66 7b 70 69 67 | 73 70 61 6e 7d 20 74 6f |\ref{pig|span} to|
|000017e0| 20 74 68 72 65 65 20 61 | 6e 64 20 66 6f 75 72 20 | three a|nd four |
|000017f0| 64 69 6d 65 6e 73 69 6f | 6e 73 2e 0a 5c 65 6e 64 |dimensio|ns..\end|
|00001800| 7b 65 78 65 72 7d 0a 0a | 5c 62 65 67 69 6e 7b 6e |{exer}..|\begin{n|
|00001810| 6f 74 65 7d 0a 54 68 69 | 73 20 69 73 20 61 20 74 |ote}.Thi|s is a t|
|00001820| 65 73 74 20 6f 66 20 74 | 68 65 20 63 75 73 74 6f |est of t|he custo|
|00001830| 6d 20 74 68 65 6f 72 65 | 6d 20 73 74 79 6c 65 20 |m theore|m style |
|00001840| 60 6e 6f 74 65 27 2e 20 | 49 74 20 69 73 20 73 75 |`note'. |It is su|
|00001850| 70 70 6f 73 65 64 20 74 | 6f 20 68 61 76 65 0a 76 |pposed t|o have.v|
|00001860| 61 72 69 61 6e 74 20 66 | 6f 6e 74 73 20 61 6e 64 |ariant f|onts and|
|00001870| 20 6f 74 68 65 72 20 64 | 69 66 66 65 72 65 6e 63 | other d|ifferenc|
|00001880| 65 73 2e 0a 5c 65 6e 64 | 7b 6e 6f 74 65 7d 0a 0a |es..\end|{note}..|
|00001890| 5c 62 65 67 69 6e 7b 62 | 74 68 6d 7d 0a 54 65 73 |\begin{b|thm}.Tes|
|000018a0| 74 20 6f 66 20 74 68 65 | 20 60 6c 69 6e 65 62 72 |t of the| `linebr|
|000018b0| 65 61 6b 27 20 73 74 79 | 6c 65 20 6f 66 20 74 68 |eak' sty|le of th|
|000018c0| 65 6f 72 65 6d 20 68 65 | 61 64 69 6e 67 2e 0a 5c |eorem he|ading..\|
|000018d0| 65 6e 64 7b 62 74 68 6d | 7d 0a 0a 54 68 69 73 20 |end{bthm|}..This |
|000018e0| 69 73 20 61 20 74 65 73 | 74 20 6f 66 20 61 20 63 |is a tes|t of a c|
|000018f0| 69 74 69 6e 67 20 74 68 | 65 6f 72 65 6d 20 74 6f |iting th|eorem to|
|00001900| 20 63 69 74 65 20 61 20 | 74 68 65 6f 72 65 6d 20 | cite a |theorem |
|00001910| 66 72 6f 6d 20 73 6f 6d | 65 20 6f 74 68 65 72 20 |from som|e other |
|00001920| 73 6f 75 72 63 65 2e 0a | 0a 5c 62 65 67 69 6e 7b |source..|.\begin{|
|00001930| 76 61 72 74 68 6d 7d 5b | 54 68 65 6f 72 65 6d 20 |varthm}[|Theorem |
|00001940| 33 2e 36 20 69 6e 20 5c | 63 69 74 65 7b 74 68 61 |3.6 in \|cite{tha|
|00001950| 74 6f 6e 65 7d 5d 0a 4e | 6f 20 68 79 70 65 72 6c |tone}].N|o hyperl|
|00001960| 69 6e 6b 69 6e 67 20 61 | 76 61 69 6c 61 62 6c 65 |inking a|vailable|
|00001970| 20 68 65 72 65 20 79 65 | 74 20 5c 64 6f 74 73 5c | here ye|t \dots\|
|00001980| 20 62 75 74 20 74 68 61 | 74 27 73 20 6e 6f 74 20 | but tha|t's not |
|00001990| 61 0a 62 61 64 20 69 64 | 65 61 20 66 6f 72 20 74 |a.bad id|ea for t|
|000019a0| 68 65 20 66 75 74 75 72 | 65 2e 0a 5c 65 6e 64 7b |he futur|e..\end{|
|000019b0| 76 61 72 74 68 6d 7d 0a | 0a 5c 62 65 67 69 6e 7b |varthm}.|.\begin{|
|000019c0| 70 72 6f 6f 66 7d 0a 48 | 65 72 65 20 69 73 20 61 |proof}.H|ere is a|
|000019d0| 20 74 65 73 74 20 6f 66 | 20 74 68 65 20 70 72 6f | test of| the pro|
|000019e0| 6f 66 20 65 6e 76 69 72 | 6f 6e 6d 65 6e 74 2e 0a |of envir|onment..|
|000019f0| 5c 65 6e 64 7b 70 72 6f | 6f 66 7d 0a 0a 5c 62 65 |\end{pro|of}..\be|
|00001a00| 67 69 6e 7b 70 72 6f 6f | 66 7d 5b 50 72 6f 6f 66 |gin{proo|f}[Proof|
|00001a10| 20 6f 66 20 54 68 65 6f | 72 65 6d 20 5c 72 65 66 | of Theo|rem \ref|
|00001a20| 7b 70 69 67 73 70 61 6e | 7d 5d 0a 41 6e 64 20 61 |{pigspan|}].And a|
|00001a30| 6e 6f 74 68 65 72 20 74 | 65 73 74 2e 0a 5c 65 6e |nother t|est..\en|
|00001a40| 64 7b 70 72 6f 6f 66 7d | 0a 0a 5c 62 65 67 69 6e |d{proof}|..\begin|
|00001a50| 7b 70 72 6f 6f 66 7d 5b | 50 72 6f 6f 66 20 28 6e |{proof}[|Proof (n|
|00001a60| 65 63 65 73 73 69 74 79 | 29 5d 0a 41 6e 64 20 61 |ecessity|)].And a|
|00001a70| 6e 6f 74 68 65 72 2e 0a | 5c 65 6e 64 7b 70 72 6f |nother..|\end{pro|
|00001a80| 6f 66 7d 0a 0a 5c 62 65 | 67 69 6e 7b 70 72 6f 6f |of}..\be|gin{proo|
|00001a90| 66 7d 5b 50 72 6f 6f 66 | 20 28 73 75 66 66 69 63 |f}[Proof| (suffic|
|00001aa0| 69 65 6e 63 79 29 5d 0a | 41 6e 64 20 61 6e 6f 74 |iency)].|And anot|
|00001ab0| 68 65 72 2e 0a 5c 65 6e | 64 7b 70 72 6f 6f 66 7d |her..\en|d{proof}|
|00001ac0| 0a 0a 5c 73 65 63 74 69 | 6f 6e 7b 54 65 73 74 20 |..\secti|on{Test |
|00001ad0| 6f 66 20 6e 75 6d 62 65 | 72 2d 73 77 61 70 70 69 |of numbe|r-swappi|
|00001ae0| 6e 67 7d 0a 0a 54 68 69 | 73 20 69 73 20 61 20 72 |ng}..Thi|s is a r|
|00001af0| 65 70 65 61 74 20 6f 66 | 20 74 68 65 20 66 69 72 |epeat of| the fir|
|00001b00| 73 74 20 73 65 63 74 69 | 6f 6e 20 62 75 74 20 77 |st secti|on but w|
|00001b10| 69 74 68 20 6e 75 6d 62 | 65 72 73 20 69 6e 20 74 |ith numb|ers in t|
|00001b20| 68 65 6f 72 65 6d 20 68 | 65 61 64 73 0a 73 77 61 |heorem h|eads.swa|
|00001b30| 70 70 65 64 20 74 6f 20 | 74 68 65 20 6c 65 66 74 |pped to |the left|
|00001b40| 2e 0a 0a 41 68 6c 66 6f | 72 73 27 20 4c 65 6d 6d |...Ahlfo|rs' Lemm|
|00001b50| 61 20 67 69 76 65 73 20 | 74 68 65 20 70 72 69 6e |a gives |the prin|
|00001b60| 63 69 70 61 6c 20 63 72 | 69 74 65 72 69 6f 6e 20 |cipal cr|iterion |
|00001b70| 66 6f 72 20 6f 62 74 61 | 69 6e 69 6e 67 20 6c 6f |for obta|ining lo|
|00001b80| 77 65 72 20 62 6f 75 6e | 64 73 0a 6f 6e 20 74 68 |wer boun|ds.on th|
|00001b90| 65 20 4b 6f 62 61 79 61 | 73 68 69 20 6d 65 74 72 |e Kobaya|shi metr|
|00001ba0| 69 63 2e 0a 5c 62 65 67 | 69 6e 7b 41 68 6c 66 6f |ic..\beg|in{Ahlfo|
|00001bb0| 72 73 7d 0a 4c 65 74 20 | 24 64 73 5e 32 20 3d 20 |rs}.Let |$ds^2 = |
|00001bc0| 68 28 7a 29 5c 6c 76 65 | 72 74 20 64 7a 5c 72 76 |h(z)\lve|rt dz\rv|
|00001bd0| 65 72 74 5e 32 24 20 62 | 65 20 61 20 48 65 72 6d |ert^2$ b|e a Herm|
|00001be0| 69 74 69 61 6e 20 70 73 | 65 75 64 6f 2d 6d 65 74 |itian ps|eudo-met|
|00001bf0| 72 69 63 20 6f 6e 0a 24 | 5c 6d 61 74 68 62 66 7b |ric on.$|\mathbf{|
|00001c00| 44 7d 5f 72 24 2c 20 24 | 68 5c 69 6e 20 43 5e 32 |D}_r$, $|h\in C^2|
|00001c10| 28 5c 6d 61 74 68 62 66 | 7b 44 7d 5f 72 29 24 2c |(\mathbf|{D}_r)$,|
|00001c20| 20 77 69 74 68 20 24 5c | 6f 6d 65 67 61 24 20 74 | with $\|omega$ t|
|00001c30| 68 65 20 61 73 73 6f 63 | 69 61 74 65 64 0a 24 28 |he assoc|iated.$(|
|00001c40| 31 2c 31 29 24 2d 66 6f | 72 6d 2e 20 49 66 20 24 |1,1)$-fo|rm. If $|
|00001c50| 5c 52 69 63 5c 6f 6d 65 | 67 61 5c 67 65 71 5c 6f |\Ric\ome|ga\geq\o|
|00001c60| 6d 65 67 61 24 20 6f 6e | 20 24 5c 6d 61 74 68 62 |mega$ on| $\mathb|
|00001c70| 66 7b 44 7d 5f 72 24 2c | 0a 74 68 65 6e 20 24 5c |f{D}_r$,|.then $\|
|00001c80| 6f 6d 65 67 61 5c 6c 65 | 71 5c 6f 6d 65 67 61 5f |omega\le|q\omega_|
|00001c90| 72 24 20 6f 6e 20 61 6c | 6c 20 6f 66 20 24 5c 6d |r$ on al|l of $\m|
|00001ca0| 61 74 68 62 66 7b 44 7d | 5f 72 24 20 28 6f 72 20 |athbf{D}|_r$ (or |
|00001cb0| 65 71 75 69 76 61 6c 65 | 6e 74 6c 79 2c 0a 24 64 |equivale|ntly,.$d|
|00001cc0| 73 5e 32 5c 6c 65 71 20 | 64 73 5f 72 5e 32 24 29 |s^2\leq |ds_r^2$)|
|00001cd0| 2e 0a 5c 65 6e 64 7b 41 | 68 6c 66 6f 72 73 7d 0a |..\end{A|hlfors}.|
|00001ce0| 0a 5c 62 65 67 69 6e 7b | 6c 65 6d 73 77 7d 5b 6e |.\begin{|lemsw}[n|
|00001cf0| 65 67 61 74 69 76 65 6c | 79 20 63 75 72 76 65 64 |egativel|y curved|
|00001d00| 20 66 61 6d 69 6c 69 65 | 73 5d 0a 4c 65 74 20 24 | familie|s].Let $|
|00001d10| 5c 7b 64 73 5f 31 5e 32 | 2c 5c 64 6f 74 73 2c 64 |\{ds_1^2|,\dots,d|
|00001d20| 73 5f 6b 5e 32 5c 7d 24 | 20 62 65 20 61 20 6e 65 |s_k^2\}$| be a ne|
|00001d30| 67 61 74 69 76 65 6c 79 | 20 63 75 72 76 65 64 20 |gatively| curved |
|00001d40| 66 61 6d 69 6c 79 20 6f | 66 20 6d 65 74 72 69 63 |family o|f metric|
|00001d50| 73 0a 6f 6e 20 24 5c 6d | 61 74 68 62 66 7b 44 7d |s.on $\m|athbf{D}|
|00001d60| 5f 72 24 2c 20 77 69 74 | 68 20 61 73 73 6f 63 69 |_r$, wit|h associ|
|00001d70| 61 74 65 64 20 66 6f 72 | 6d 73 20 24 5c 6f 6d 65 |ated for|ms $\ome|
|00001d80| 67 61 5e 31 24 2c 20 5c | 64 6f 74 73 2c 20 24 5c |ga^1$, \|dots, $\|
|00001d90| 6f 6d 65 67 61 5e 6b 24 | 2e 0a 54 68 65 6e 20 24 |omega^k$|..Then $|
|00001da0| 5c 6f 6d 65 67 61 5e 69 | 20 5c 6c 65 71 5c 6f 6d |\omega^i| \leq\om|
|00001db0| 65 67 61 5f 72 24 20 66 | 6f 72 20 61 6c 6c 20 24 |ega_r$ f|or all $|
|00001dc0| 69 24 2e 0a 5c 65 6e 64 | 7b 6c 65 6d 73 77 7d 0a |i$..\end|{lemsw}.|
|00001dd0| 0a 54 68 65 6e 20 6f 75 | 72 20 6d 61 69 6e 20 74 |.Then ou|r main t|
|00001de0| 68 65 6f 72 65 6d 3a 0a | 5c 62 65 67 69 6e 7b 74 |heorem:.|\begin{t|
|00001df0| 68 6d 73 77 7d 0a 4c 65 | 74 20 24 64 5f 7b 5c 6d |hmsw}.Le|t $d_{\m|
|00001e00| 61 78 7d 24 20 61 6e 64 | 20 24 64 5f 7b 5c 6d 69 |ax}$ and| $d_{\mi|
|00001e10| 6e 7d 24 20 62 65 20 74 | 68 65 20 6d 61 78 69 6d |n}$ be t|he maxim|
|00001e20| 75 6d 2c 20 72 65 73 70 | 2e 5c 20 6d 69 6e 69 6d |um, resp|.\ minim|
|00001e30| 75 6d 20 64 69 73 74 61 | 6e 63 65 0a 62 65 74 77 |um dista|nce.betw|
|00001e40| 65 65 6e 20 61 6e 79 20 | 74 77 6f 20 61 64 6a 61 |een any |two adja|
|00001e50| 63 65 6e 74 20 76 65 72 | 74 69 63 65 73 20 6f 66 |cent ver|tices of|
|00001e60| 20 61 20 71 75 61 64 72 | 69 6c 61 74 65 72 61 6c | a quadr|ilateral|
|00001e70| 20 24 51 24 2e 20 4c 65 | 74 20 24 5c 73 69 67 6d | $Q$. Le|t $\sigm|
|00001e80| 61 24 0a 62 65 20 74 68 | 65 20 64 69 61 67 6f 6e |a$.be th|e diagon|
|00001e90| 61 6c 20 70 69 67 73 70 | 61 6e 20 6f 66 20 61 20 |al pigsp|an of a |
|00001ea0| 70 69 67 20 24 50 24 20 | 77 69 74 68 20 66 6f 75 |pig $P$ |with fou|
|00001eb0| 72 20 6c 65 67 73 2e 0a | 54 68 65 6e 20 24 50 24 |r legs..|Then $P$|
|00001ec0| 20 69 73 20 63 61 70 61 | 62 6c 65 20 6f 66 20 73 | is capa|ble of s|
|00001ed0| 74 61 6e 64 69 6e 67 20 | 6f 6e 20 74 68 65 20 63 |tanding |on the c|
|00001ee0| 6f 72 6e 65 72 73 20 6f | 66 20 24 51 24 20 69 66 |orners o|f $Q$ if|
|00001ef0| 66 0a 5c 62 65 67 69 6e | 7b 65 71 75 61 74 69 6f |f.\begin|{equatio|
|00001f00| 6e 7d 5c 6c 61 62 65 6c | 7b 73 64 71 73 77 7d 0a |n}\label|{sdqsw}.|
|00001f10| 5c 73 69 67 6d 61 5c 67 | 65 71 20 5c 73 71 72 74 |\sigma\g|eq \sqrt|
|00001f20| 7b 64 5f 7b 5c 6d 61 78 | 7d 5e 32 2b 64 5f 7b 5c |{d_{\max|}^2+d_{\|
|00001f30| 6d 69 6e 7d 5e 32 7d 2e | 0a 5c 65 6e 64 7b 65 71 |min}^2}.|.\end{eq|
|00001f40| 75 61 74 69 6f 6e 7d 0a | 5c 65 6e 64 7b 74 68 6d |uation}.|\end{thm|
|00001f50| 73 77 7d 0a 0a 5c 62 65 | 67 69 6e 7b 63 6f 72 73 |sw}..\be|gin{cors|
|00001f60| 77 7d 0a 41 64 6d 69 74 | 74 69 6e 67 20 72 65 66 |w}.Admit|ting ref|
|00001f70| 6c 65 63 74 69 6f 6e 20 | 61 6e 64 20 72 6f 74 61 |lection |and rota|
|00001f80| 74 69 6f 6e 2c 20 61 20 | 74 68 72 65 65 2d 6c 65 |tion, a |three-le|
|00001f90| 67 67 65 64 20 70 69 67 | 20 24 50 24 20 69 73 20 |gged pig| $P$ is |
|00001fa0| 63 61 70 61 62 6c 65 20 | 6f 66 0a 73 74 61 6e 64 |capable |of.stand|
|00001fb0| 69 6e 67 20 6f 6e 20 74 | 68 65 20 63 6f 72 6e 65 |ing on t|he corne|
|00001fc0| 72 73 20 6f 66 20 61 20 | 74 72 69 61 6e 67 6c 65 |rs of a |triangle|
|00001fd0| 20 24 54 24 20 69 66 66 | 20 28 5c 72 65 66 7b 73 | $T$ iff| (\ref{s|
|00001fe0| 64 71 73 77 7d 29 20 68 | 6f 6c 64 73 2e 0a 5c 65 |dqsw}) h|olds..\e|
|00001ff0| 6e 64 7b 63 6f 72 73 77 | 7d 0a 0a 5c 62 65 67 69 |nd{corsw|}..\begi|
|00002000| 6e 7b 74 68 65 62 69 62 | 6c 69 6f 67 72 61 70 68 |n{thebib|liograph|
|00002010| 79 7d 7b 39 39 7d 0a 5c | 62 69 62 69 74 65 6d 7b |y}{99}.\|bibitem{|
|00002020| 74 68 61 74 6f 6e 65 7d | 20 44 75 6d 6d 79 20 65 |thatone}| Dummy e|
|00002030| 6e 74 72 79 2e 0a 5c 65 | 6e 64 7b 74 68 65 62 69 |ntry..\e|nd{thebi|
|00002040| 62 6c 69 6f 67 72 61 70 | 68 79 7d 0a 0a 5c 65 6e |bliograp|hy}..\en|
|00002050| 64 7b 64 6f 63 75 6d 65 | 6e 74 7d 0a |d{docume|nt}. |
+--------+-------------------------+-------------------------+--------+--------+